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Energy eigenvalues of double-well potentials for two-dimensional systems are calculated
by the approach of expanding the potential functions such as V (x, y;Z2,λ) = −Z2[x2 +
y2]+λ[x4 +2x2y2 +y4] around their minima, using the inner product technique, for various
values of perturbation parameters Z2 and λ. Some of the results calculated by the inner
product technique are compared with the results produced by other means.

1. Introduction

The double-well potential for one-dimensional quantum system has been the sub-
ject of intensive study in the last two decades. The literature on this topic, voluminous
as it is, has recently been thoroughly referenced by several workers [1–9,11,14,19,20].
Unfortunately, comparable study have not been extended to multidimensional systems
in spite of some progress that has been made to calculate their energy eigenvalues
[12,15–18].

The numerical solution of the Schrödinger equation, by the approach of expanding
some potentials around their minima in one-dimensional space is now customary.
Different techniques are competing. For example, hypervirial perturbation theory [19],
inner product perturbation theory [18], and so on. In contrast to the potential functions
in multidimensional space, which have not been treated by the same approach by any
worker in the past.

In this work, the general form of Schrödinger equation for the double-well po-
tential in two-dimensional system can be written as

[
− ∂2

∂y2 −
∂2

∂y2 + V
(
x, y;Z2,λ

)]
Ψ(x, y) = EΨ(x, y). (1)

 J.C. Baltzer AG, Science Publishers
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In the present paper, the inner product technique is applied to a double-well
potential in two-dimensions,

V
(
x, y;Z2,λ

)
= −Z2[x2 + y2]+ λ

[
x4 + 2x2y2 + y4]. (2)

The depth of the double-well is controlled by the parameters Z2 and λ. If the
potential barrier between the two wells were of infinite height, the two wells would be
totally “disconnected” and the energy spectrum would consist of same set of energy
eigenvalues in each well. Thus, each energy eigenvalue of the system would be doubly
degenerate.

Physically, when the potential well is very deep (for large Z2/λ values) the
classical turning points for the lowest bound states are very close to the minimum of
each well; therefore the particle, even quantum mechanically, can in the main see only
the region of the potential near the minima. The lower levels for this potential have
therefore very nearly degenerate eigenvalues.

The eigenvalue spectrum of the Schrödinger equation (2) with V (x, y;Z2,λ) has
the feature that the lower eigenvalues are closely bunched in one group if the values
of the Z2/λ are sufficiently large. As Z2/λ increases, the magnitude of the splitting
between these levels decreases, i.e.,

|E11 −E00| ≈ |E11 −E10| = ∆E ∼= 0. (3)

The splitting ∆E will be small at the bottom of the well and will increase as the
levels approach the top of the barrier. When ∆E has its minimum value, the nearly
degenerate eigenfunctions have equal weight in each potential well.

The paper is organized as follows. Section 2 is concerned with the inner product
technique and its use to calculate the energy eigenvalues for the double-well potentials
in two dimensions for several eigenstates. Section 3 contains a discussion of the
numerical results.

2. The double-well potential in two-dimensions V (X,Y ;Z2,λ) and the
recurrence relation

The inner product technique is perturbative technique used to treated the perturbed
oscillator in one, two and three dimensions with even parity. In this work, we modify
and extend the inner product technique to treat a potential functions with mixed parity.

The idea of expanding the double-well potential function V (x,Z2,λ) around
its minimum using a Taylor series has been used by Witwit and Killingbeck [19] and
applied to the double-well potential in a one-dimensional system to calculate the energy
eigenvalues. We have since established that the idea can be extended quite easily to
apply to a double-well in multidimensional quantum systems.

Most of the ideas of a potential function in one dimension may be easily gen-
eralized to the potential function of two or more variables but the labour is greatly
increased. If the potential function V has more than one independent variable, say
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V = V (x, y), the Taylor expansions of V (x−xm, y−ym) around x = xm and y = ym
can be written as

V (x− xm, y − ym) = V (xm, ym) + (x− xm)
∂V

∂x
+ (y − ym)

∂V

∂y

+
1
2!

[
(x− xm)2 ∂

2V

∂x2 + 2(x− xm)(y − ym)
∂2V

∂x∂y

+ (y − ym)2 ∂
2V

∂y2

]
+

1
3!

[
(x− xm)3 ∂

3V

∂x3 + 3(x− xm)2(y − ym)
∂3V

∂x2∂y

+ 3(x− xm)(y − ym)2 ∂3V

∂x∂y2 + (y − ym)3∂
3V

∂y3

]
+

1
4!

[
(x− xm)4 ∂

4V

∂x4 + 4(x− xm)3(y − ym)
∂4V

∂x3∂y

+ 4(x− xm)2(y − ym)2 ∂4V

∂x2∂y2

+ (x− xm)(y − ym)3 ∂4V

∂x∂y3 + (y − ym)4 ∂
4V

∂y4

]
(4)

with all derivatives evaluated at the point (xm, ym). For example, at (Z2 = 1,λ = 4)
and (Z2 = 16,λ = 4), and replacing x = x− xm, y = y− ym, the equation (4) takes
the following two forms, respectively:

V
(
x, y;Z2 = 1,λ = 4

)
=− 1

16
+
[
x2 + y2]+ 4

[
x3 + y3]+ 4

[
x4 + y4]

+
[
x+ 2x2][2y + 4y2], (5)

V
(
x, y;Z2 = 3,λ = 12

)
=− 3

16
+ 3
[
x2 + y2]+ 12

[
x3 + y3]+ 12

[
x4 + y4]

+
[
x+ 2x2][6y + 12y2]. (6)

The general form for the expansion of the potential V (x, y;Z2,λ) when Z2 = λ can
be expressed as

V
(
x, y;Z2,λ

)
= −Z

2

4
+Z2[x2+2x3+x4+y2+2y3+y4]+2Z2[x+x2][y+y2]. (7)

The energy perturbation series is expected to be divergent, so we start by introducing
a renormalized parameter β, and write the potential in equation (4) V (x, y;Z2,λ) in a
renormalized form,

V r
β

(
x, y;Z2,λ

)
=
[
µ2
x − λβ

]
x2 +

[
µ2
y − λβ

]
y2 + C

(
x3)x3 + C

(
y3)y3
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+ C
(
x4)x4 + C

(
y4)y4 + C(xy)xy + C

(
xy2)xy2

+ C
(
x2y
)
x2y + C

(
x2y2)x2y2 + V (xm, ym). (8)

The double-well potential given by equation (8) in two dimensions is in general non-
separable in Cartesian coordinates, showing symmetrical behaviour, and due to this
behaviour a great deal of computation is not required to arrive at our results:

µ2
x = C

(
x2)+ λβ, µ2

y = C
(
y2)+ λβ, λ = 1, (9)

where C(xNyM ) (N ,M = 0, 1, . . . , 4) are the coefficients of the expanded potential.
The double-well potential has minimum at (x = xm and y = ym), the probability

of finding the particle is locally maximal at x = xm and y = ym. Its low energy
levels should involve wave functions which present the maximal probability density
at a position close to the minimum of the two-well potential. In this case we expand
V (x, y;Z2,λ) around the minimum.

The central idea of this work is to expand the potential V (x, y;Z2,λ) in a Taylor
series about its minimum value, and solve the resulting approximate problem by inner
product theory. The expanded potential V r

β (x, y;Z2,λ) of equation (8) is of mixed
parity type. It is clear from equation (8), that we can regard the first two terms as
unperturbed terms and the other terms as the perturbation.

To find the recurrence relations which allow us to calculate the eigenvalues for
the Schrödinger equation (1) we use the reference function

Φ(x, y) =
(
xIyJ

)
exp
[
−1

2

(
µxx

2 + µyy
2)], (10)

where I and J are non-negative integers. The methods of calculation used by the
author start from the equation

EW (I ,J) = 〈Ψ|H|Φ〉, (11)

obtained by taking the inner product of the Schrödinger equation (1) with the reference
function (10). The W (I ,J), sometimes called moments, are defined by

W (I ,J) = 〈Φ|ψ〉. (12)

Then substituting the perturbation expansions

W (I ,J) =
∑
M

W (I ,J ,M )λM , (13)

E =
∑
N

E(N )λN (14)
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Figure 1. Double-well potential V (x, y;Z2 = 625, λ = 25).

into the W (I ,J) recurrence relation given by equation (11) leads to a recurrence
relations for the coefficients. For the renormalized potential V r

β (x, y;Z2,λ) given by
equation (8) the relation can be written as

M=60∑
N=0

E(N )W (I ,J ,M −N )

= C
(
x3)W (I + 3, J ,M − 1) + C

(
y3)W (I ,J + 3,M − 1)

+ C
(
x4)W (I + 4, J ,M − 1) + C

(
y4)W (I ,J + 4,M − 1)

+ C(xy)W (I + 1, J + 1,M − 1)− C
(
xy2)W (I + 1, J + 2,M − 1)

+ C
(
x2y
)
W (I + 2, J + 1,M − 1) + C

(
x2y2)W (I + 2, J + 2,M − 1)

− β
[
S(I + 1, J ,M − 1) + S(I ,J + 1,M − 1)

]
+
[
µx(2I + 1) + µy(2J + 1)

]
W (I ,J ,M )

− I(I − 1)W (I − 2, J ,M )− J(J − 1)W (I ,J − 2,M ). (15)

The unperturbed energy can be expressed as

E(0) = µx(2nx + 1) + µy(2ny + 1) + V (xm, ym) (16)
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Figure 2. The expanded double-well potential V (x, y;Z2 = 625,λ = 25) around their minima xm =
ym = 2.5.

and the initial coefficient to start our calculations is given as

W (nx,ny, 0) = 1, nx,ny = 0, 1. (17)

The indices are scanned in the order I ,J ,M as explained in [13] and the rela-
tion (15) is used to work out W (I ,J ,M ) in terms of lower-order elements that are
already known. E(N ) is found from the relation (15) for the special case I = nx,
J = ny, and the sum on the left-hand side becomes E(N ), because of the intermediate
normalization convention W (nx,ny, 0) = 1 that we impose on the algorithm.

Up to 60 coefficient of the perturbation series for the double potential for three
energy levels were computed according to

Enx,ny (λ) =
60∑
N=0

E(N )λN . (18)

We should point out that Aitken’s transformation has been used in order to in-
crease the accuracy of our results and to accelerate the rate of convergence of our
calculations.
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The power series method [13] can be used to compute the energy eigenvalues for
the Schrödinger equation when potential (2) has a circular symmetry in two dimensions,
i.e., x = r sin θ, y = r cos θ, r2 = x2 + y2.

The general form for the Schrödinger equation in two dimensions can be written
as [

− d2

dr2 +

(
m2 − 1

4

)
r−2 + V

(
r;Z2,λ

)]
Ψ(r) = EΨ(r), (19)

where m is the magnetic quantum number. The potential V (r;Z2,λ) can be expressed
as

V
(
r;Z2,λ

)
= −Z2r2 + λr4. (20)

The energy levels are then most appropriately characterized by the quantum numbers
(nr, l) rather than (nx,ny). The energies of the unperturbed levels are

E(0) = (4nr + 2m+ 2), (21)

2nr +m ≡ nx + ny, (22)

where nr is called the radial quantum number and l the angular momentum.

3. Results and discussion

The inner product technique has been applied in this paper for a double-well
potentials on two-dimensional systems. In this paper we expand the potential functions
around their minima at xm and ym in order to estimate the eigenvalues around their
minima xm, ym. Eigenvalues for different values of Z2, λ and state numbers nx,ny
are listed in tables 1–3.

In table 1, we list the energy eigenvalues for a double potential in two-dimensional
system V (x, y;Z2,λ) for the case Z2 = λ, for the ground state E00 and the first two
excited state E10 and E11, over a wide range of 1/6 6 Z2 = λ 6 5× 103.

The energy eigenvalues for a double potential in a two-dimensional system
V (x, y;Z2,λ) and their energy eigenvalues are quoted in tables 2 and 3 for the ground
state E00 and the first two excited states E00 and E11, for different values of Z2 and
λ lying between 0.25 6 λ 6 104 and 0.25 6 Z2 6 625. In the same tables, we listed
the values of the minimum points xm and ym, and also we listed the values of these
potentials V (xm, ym) corresponding to these points, we also present the coefficients
(A,B,C,D,E,F ) of the expanding potential in table 3, which can be expressed as

V
(
x, y;Z2,λ

)
=−V (xm, ym) +A

[
x2 + y2]+B

[
x3 + y3]+ C

[
x4 + y4]+Dxy

+E
[
x2y + xy2]+ Fx2y2. (23)

The general forms of the potentials (23) enable other workers in the future to
study this problem in order to understand the typical features of their energy spectra.
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Table 1
Eigenvalues of a double-well potential V (x, y;Z2,λ) for several sets of perturbation parameters for three
eigenstates E00, E10 and E11. First line – power series method; second line – inner product technique.

Z2 E00 E10 = E01 E11

1/6 1.0843151777768309192 2.61649090835940491 4.439089607962285029
1.084315 2.61649 4.43908

1 1.6374879527236908208 4.19968538748636154 7.328144388065296548
1.63748 4.19968 7.32814

2 1.8044830442464193546 4.86881781300593481 8.676133945433321839
1.8044 4.8688 8.67613

3 1.8488321914370639803 5.22422325263170673 9.474465483207472146
1.8488 5.2242 9.4744

4 1.8385590283544875739 5.43724394566261425 10.020506633563638597
1.8385 5.4372 10.0205

5 1.7968689041605638879 5.56732946175554058 10.418323520678918695
1.796 5.567 10.418

6 1.7346246501862441306 5.64268198028411299 10.717618348733334183
1.734 5.642 10.717

7 1.6578208954336511232 5.67904295688764262 10.946294283550039271
1.657 5.679 10.946

8 1.5701260000887291455 5.68614299833470901 11.121689047527532774
1.570 5.686 11.122

9 1.4739514548646148314 5.67043750462078796 11.255359002152461509
1.474 5.670 11.255

10 1.3709684666267474547 5.63643781301499726 11.355415550499845011
1.371 5.636 11.355

15 0.7871869197830882583 5.28296005117310908 11.516108578101458477
0.787 5.283 11.516

20 0.1326082762362237966 4.74587424739272832 11.333999585344506495
25 −0.5646018123013606328 4.10489140261927649 10.956328072930601301
30 −1.2917235797372086225 3.39667660362108241 10.451760973533783270
35 −2.0418946945009686787 2.64116844530880466 9.858066497432172239
40 −2.8109577662735971057 1.85041586313421799 9.198286922415046065
45 −3.5961728350773893302 1.03225453866347263 8.487527481546965620
50 −4.3956121483598687690 0.19206498384905919 7.736229151400722751
60 −6.0317660261179082664 −1.53998339323537888 6.140159922629425277
70 −7.7112576514331486264 −3.32509459910430469 4.450515567992847895
80 −9.4285608314216875014 −5.15087752945364766 2.691667923680334379
90 −11.1795481987876144131 −7.00928422595450137 0.879427807681633035
100 −12.9609269649048695144 −8.89476918524743711 −0.975373241579171062
150 −22.2395988119109852032 −18.61734851058081198 −10.675569055062844518
200 −31.9843137660799431163 −28.67964434783808212 −20.809796825585514889
250 −42.0559962998298213887 −31.202833229778826495 −38.97510605095315706
300 −52.3678827136362476641 −41.775103082675892486 −49.44730794073281388
400 −73.5037724106590025923 −63.298132190341071527 −70.78987207245184340
500 −95.1183975652991801459 −85.183093550308476614 −92.52792314464256671
600 −117.0687809193023407232 −107.332160745065192644 −114.55905718073712544
700 −139.2708620634581284772 −129.686598805852351331 −136.81794904111663296
800 −161.6706545176345775351 −152.207257408023620635 −159.26001993510215814
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Table 1
(Continued.)

Z2 E00 E10 = E01 E11

900 −184.2311264703076048874 −174.866253309587203003 −181.85334567362862524
1000 −206.9255783668468765096 −197.642800253003109450 −204.57419684955686821
1500 −321.8416563257501696780 −312.827923845633274415 −319.57176725859997975
2000 −438.3504152100121300244 −429.489717801849096314 −436.12424871321182629
5000 −1151.5572330234744599157 −1143.03791006312355479 −1149.42396264921099512

Figure 3. Graph of three energy levels Enx ,ny for the double-well potential V (x, y;Z2,λ). For small
values of Z2/λ, the positive energies are small, then it is necessary to multiply these energies by a factor

of 10, in order to obtain a clear figure.

It is clear from our results in tables 2 and 3, that when Z2/λ is large, the potential
minimum occurs at large values of x and y, so that the wave function centered at xm
and ym does not penetrate too much into left-hand well; obviously, this is not the case
for small Z2/λ.

In tables 2 and 3 emphasis is specially placed on the larger values of the depth
Z2 because for the three states E00, E10 and E11 have almost degenerate eigenvalues.
As Z2/λ increases, the magnitude of the splitting between these levels decreases, i.e.,
|E10 − E00| ≈ |E11 − E00| = ∆E ≈ 0, as is clear from the results listed in tables 2
and 3 and figure 3, and this confirmed the results conjectured by the previous works
[17,18].

In tables 1–3 we compare the results obtained by the inner product technique with
those obtained by power series method. The agreement between the two methods is in
general good, but at large values of Z2, the inner product technique faces difficulties in
producing the eigenvalues, due to the convergence problem, while the power series is
able to give high accuracy, and the accuracy seems insensitive to higher values of Z2.
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Table 2
Eigenvalues of a double-well potential V (x, y;Z2,λ) for several sets of perturbation parameters for two

eigenstates E00 and E10. First line – power series method; second line – inner product technique.

Z2 λ xm ym −V (xm, ym) E00 E10 = E01

1/4 1 1/4 1/4 1/64 2.1787811759361418227 5.10862071412588021162
2.178781 5.108621

1 1/4 1 1 1 0.1651653292236315486 1.29666328921032645832
0.16516 1.29666

1 4 1/4 1/4 1/16 3.2988377079349240454 7.83701536032146873650
3.298837 7.837015

4 1 1 1 4 −1.6746781702247934097 −0.56212069832440285085
−1.674 −0.5621

4
√

2
√

2 1 1 4
√

2 −2.8174073854179428693 −1.77619140084241815847
−2.817 −1.776√

2 4
√

2 1/4 1/4 1/(8
√

2) 3.6425216866654988021 8.69439952226333190438
3.64252 8.694399√

3
√

3/4 1 1
√

3 −0.2389804937470944807 0.93186626245449553365
−0.238 0.931

4
√

3
√

3 1 1 4
√

3 −3.73128645772 −2.74168983870226523053
−3.731 −2.7416√

5
√

5 1/2 1/2
√

5/4 1.8220774473995417074 4.97114476287340423439
1.8221 4.9711

4
√

5
√

5 1 1 4
√

5 −5.2322437004274371274 −4.31339791060492395451
−5.232 −4.313

4
√

7
√

7 1 1 4
√

7 −6.4901059947471383543 −5.61858663113509389619
−6.490 −5.618√

7 4
√

7 1/4 1/4
√

7/16 4.3281447185753846384 10.44233030057788965314
4.3281 10.44233

4 16 1/4 1/4 1/4 4.8211659516406174280 11.73852456988894350935
4.8211 11.73852

2 8 1/4 1/4 1/8 4.0119688764113039501 9.62939034169658128114
4.0119 9.62939

8 2 1 1 8 −4.5221383627768976017 −3.57193644204140065221
−4.522 −3.572

8 32 1/4 1/4 1/2 5.6939636162457358656 14.15336720753876425017
5.6939 14.15336

16 64 1/4 1/4 1 6.5499518108947632830 16.79874154994544617789
6.54995 16.79874

16 256 1/8 1/8 1/4 13.1953508317396961818 31.34806144128587494601
13.19535 31.348061

25 625 1/10 1/10 1/4 18.0916528697467783409 42.76185477063849179901
18.091652 42.761854

100 400 1/4 1/4 25/4 6.8664669974978532132 22.61989308848137033303
6.8665 22.61989

40 103 1/10 1/10 2/5 20.7595245052678659655 49.33297281720582128802
20.759524 49.332972

102 104 1/20 1/20 1/4 47.4432730968702205018 110.92285334174981146371
47.44327 110.922853
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Table 2
(Continued.)

Z2 λ xm ym −V (xm, ym) E00 E10 = E01

16 4 1 1 16 −10.8205188690327884519 −10.05581964986195411208
32 8 1 1 32 −24.4341897872129731821 −23.78943195017113664216
64 16 1 1 64 −53.0974630504781789002 −52.51101643160262214682

256 16 2 2 1024 −824.3485304128287185987 −824.20124841655491853453
625 25 5/2 5/2 15625/4 −1751.8599778851174516594 −1751.71184466088061526692

Table 3
The coefficients of the expanded potentials V (x, y;Z2,λ) ≡ −Vm+A[x2 + y2] +B[x3 + y3] +C[x4 +
y4] +Dxy+E[xy2 + x2y] +Fx2y2 and the energy for the second excited state E11. First line – power

series; second line – inner product.

Z2 λ xm ym −Vm A B C D E F E11

1/4 1 1/4 1/4 1/64 1/4 1 1 1/2 1 2 8.54203369483475573005
8.542033

1 1/4 1 1 1 1 1 1/4 2 1 1/2 2.87513314732153278819
2.87513

1 4 1/4 1/4 1/16 1 4 4 2 4 8 13.19306206246391090591
13.193062

4 1 1 1 4 4 4 1 8 4 2 1.36847851852892882643
1.36847

4
√

2
√

2 1 1 4
√

2 4
√

2 4
√

2
√

2 8
√

2 4
√

2 2
√

2 0.19646195361830885756
0.19646√

2 4
√

2 1/4 1/4 1/8
√

2
√

2 4
√

2 4
√

2 2
√

2 4
√

2 8
√

2 14.67129708502542526061
14.671297√

3
√

3/4 1 1
√

3
√

3
√

3
√

3/4 2
√

3
√

3
√

3/2 2.67386194727777643566
2.67386

4
√

3
√

3 1 1 4
√

3 4
√

3 4
√

3
√

3 8
√

3 4
√

3 2
√

3 −0.75681562553391021578
−0.7568√

5
√

5 1/2 1/2
√

5/4
√

5 2
√

5
√

5 2
√

5 2
√

5 2
√

5 8.89708405157769917376
8.89708

4
√

5
√

5 1 1 4
√

5 4
√

5 4
√

5
√

5 8
√

5 4
√

5 2
√

5 −2.32667388711564077242
−2.3266

4
√

7
√

7 1 1 4
√

7 4
√

7 4
√

7
√

7 8
√

7 4
√

7 2
√

7 −3.6386569960036590324
−3.638√

7 4
√

7 1/4 1/4
√

7/16
√

7 4
√

7 4
√

7 2
√

7 4
√

7 8
√

7 17.7149010759209272767
17.714901

4 16 1/4 1/4 1/4 4 16 16 8 16 32 20.00237600802916244995
20.00237

2 8 1/4 1/4 1/8 2 8 8 4 8 16 16.29400223524496885588
16.294002

8 2 1 1 8 8 8 2 16 8 4 −1.58417228650699250109
−1.584

8 32 1/4 1/4 1/2 8 32 32 16 32 64 24.35335078234699469491
24.35335
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Table 3
(Continued.)

Z2 λ xm ym −Vm A B C D E F E11

16 64 1/4 1/4 1 16 64 64 32 64 128 29.31257755226118619289
29.31257

16 256 1/8 1/8 1/4 16 128 256 32 128 512 52.77224824985564362062
52.772248

25 625 1/10 1/10 1/4 25 250 625 50 250 1250 71.79964556193960785223
71.799645

100 400 1/4 1/4 25/4 100 400 400 200 400 800 43.12239868785334026201
43.12239

40 103 1/10 1/10 2/5 40 400 1000 80 400 2000 83.06120653309269041894
83.061206

102 104 1/20 1/20 1/4 100 2000 104 200 2000 2× 104 185.19350065722970401545
185.1935006

16 4 1 1 16 16 16 4 32 16 8 −8.11578177921287062138
32 8 1 1 32 32 32 8 64 32 16 −21.95711140731594064126
64 16 1 1 64 64 64 16 128 64 32 −50.78120100250709703521
256 16 2 2 1024 256 128 16 512 128 32 −823.75950939266511494548
625 25 5/2 5/2 15625/4 625 250 25 1250 250 50 −1751.26753124828917523964

The quantity of great interest here is the splitting between energies levels

∆E11
10 = E11 −E10, ∆E10

00 = E10 −E00, (24)

that controls the tunnelling rate from one well to the other. It is generally believed
to have an exponential character for deep wells [10]. It is clear from our results in
tables 2 and 3, that for large values of Z2/λ, the well is deep and wide and these
state functions Ψ00(x, y), Ψ10(x, y) and Ψ11(x, y) are approximately peaked over the
minima of the well. As Z2/λ increases these minima move further and further out
away from the origin.

We have plotted the variation of the first few energy levels in figure 3 as function
of Z2/λ to display the degeneracy of energy levels for our results in tables 2 and 3 for
the double-well potential in two-dimensional systems for the energy levels E00, E10

and E11 different values of Z2/λ. We can observe in the figure 3 that the energy
levels are degenerate for higher values of Z2/λ.
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